from IPython.core.display import display, HTML
display(HTML("<style>.container { width:140% !important; }</style>"))
PyTorch Dataset 심화 part2)¶
PyTorch Dataset 심화 part1) 에 이은 part2) 입니다.
해당 코드는 [https://boostcamp.connect.or.kr/] 에서 참조했음을 알려드립니다.
MaskBaseDataset Class 를 활용하여 MaskStratifiedDataset, ThreeWayStratifiedDataset 등 라는 새로운 Dataset을 정의 합니다.
import os
import random
from collections import defaultdict
from typing import Tuple, List
from enum import Enum
from PIL import Image
from torch.utils.data import Dataset, Subset, random_split
from torchvision import transforms
from torchvision.transforms import *
import numpy as np
class MaskLabels(int, Enum):
MASK = 0
INCORRECT = 1
NORMAL = 2
class GenderLabels(int, Enum):
MALE = 0
FEMALE = 1
@classmethod
def from_str(cls, value: str) -> int:
value = value.lower()
if value == "male":
return cls.MALE
elif value == "female":
return cls.FEMALE
else:
raise ValueError(f"Gender value should be either 'male' or 'female', {value}")
class AgeLabels(int, Enum):
YOUNG = 0
MIDDLE = 1
OLD = 2
@classmethod
def from_number(cls, value: str) -> int:
try:
value = int(value)
except Exception:
raise ValueError(f"Age value should be numeric, {value}")
if value < 30:
return cls.YOUNG
elif value < 60:
return cls.MIDDLE
else:
return cls.OLD
class MaskBaseDataset(Dataset):
num_classes = 3 * 2 * 3
_file_names = {
"mask1": MaskLabels.MASK,
"mask2": MaskLabels.MASK,
"mask3": MaskLabels.MASK,
"mask4": MaskLabels.MASK,
"mask5": MaskLabels.MASK,
"incorrect_mask": MaskLabels.INCORRECT,
"normal": MaskLabels.NORMAL
}
image_paths = []
mask_labels = []
gender_labels = []
age_labels = []
def __init__(self, data_dir, mean=(0.548, 0.504, 0.479), std=(0.237, 0.247, 0.246), val_ratio=0.2):
self.data_dir = data_dir
self.mean = mean
self.std = std
self.val_ratio = val_ratio
self.transform = None
self.setup()
self.calc_statistics()
def setup(self):
profiles = os.listdir(self.data_dir)
for profile in profiles:
if profile.startswith("."): # "." 로 시작하는 파일은 무시합니다
continue
img_folder = os.path.join(self.data_dir, profile)
for file_name in os.listdir(img_folder):
_file_name, ext = os.path.splitext(file_name)
if _file_name not in self._file_names: # "." 로 시작하는 파일 및 invalid 한 파일들은 무시합니다
continue
img_path = os.path.join(self.data_dir, profile, file_name) # (resized_data, 000004_male_Asian_54, mask1.jpg)
mask_label = self._file_names[_file_name]
id, gender, race, age = profile.split("_")
gender_label = GenderLabels.from_str(gender)
age_label = AgeLabels.from_number(age)
self.image_paths.append(img_path)
self.mask_labels.append(mask_label)
self.gender_labels.append(gender_label)
self.age_labels.append(age_label)
def calc_statistics(self):
has_statistics = self.mean is not None and self.std is not None
if not has_statistics:
print("[Warning] Calculating statistics... It can take a long time depending on your CPU machine")
sums = []
squared = []
for image_path in self.image_paths[:3000]:
image = np.array(Image.open(image_path)).astype(np.int32)
sums.append(image.mean(axis=(0, 1)))
squared.append((image ** 2).mean(axis=(0, 1)))
self.mean = np.mean(sums, axis=0) / 255
self.std = (np.mean(squared, axis=0) - self.mean ** 2) ** 0.5 / 255
def set_transform(self, transform):
self.transform = transform
def __getitem__(self, index):
assert self.transform is not None, ".set_tranform 메소드를 이용하여 transform 을 주입해주세요"
image = self.read_image(index)
mask_label = self.get_mask_label(index)
gender_label = self.get_gender_label(index)
age_label = self.get_age_label(index)
multi_class_label = self.encode_multi_class(mask_label, gender_label, age_label)
image_transform = self.transform(image)
return image_transform, multi_class_label
def __len__(self):
return len(self.image_paths)
def get_mask_label(self, index) -> MaskLabels:
return self.mask_labels[index]
def get_gender_label(self, index) -> GenderLabels:
return self.gender_labels[index]
def get_age_label(self, index) -> AgeLabels:
return self.age_labels[index]
def read_image(self, index):
image_path = self.image_paths[index]
return Image.open(image_path)
@staticmethod
def encode_multi_class(mask_label, gender_label, age_label) -> int:
return mask_label * 6 + gender_label * 3 + age_label
@staticmethod
def decode_multi_class(multi_class_label) -> Tuple[MaskLabels, GenderLabels, AgeLabels]:
mask_label = (multi_class_label // 6) % 3
gender_label = (multi_class_label // 3) % 2
age_label = multi_class_label % 3
return mask_label, gender_label, age_label
@staticmethod
def denormalize_image(image, mean, std):
img_cp = image.copy()
img_cp *= std
img_cp += mean
img_cp *= 255.0
img_cp = np.clip(img_cp, 0, 255).astype(np.uint8)
return img_cp
def split_dataset(self) -> Tuple[Subset, Subset]:
"""
데이터셋을 train 과 val 로 나눕니다,
pytorch 내부의 torch.utils.data.random_split 함수를 사용하여
torch.utils.data.Subset 클래스 둘로 나눕니다.
구현이 어렵지 않으니 구글링 혹은 IDE (e.g. pycharm) 의 navigation 기능을 통해 코드를 한 번 읽어보는 것을 추천드립니다^^
"""
n_val = int(len(self) * self.val_ratio)
n_train = len(self) - n_val
train_set, val_set = random_split(self, [n_train, n_val])
return train_set, val_set
MaskStratifiedDataset¶
MaskStratifiedDataset 같은 경우 target의 클래스 distrubtion에 따란 train, validation 을 나눕니다.
MaskBaseDataset 를 inherit 상속 받아 쓰시면 됩니다.
바꾸어야 될 부분은 set 과 split_dataset 함수입니다.
set 함수에서 dictionary 을 활용하여 클래스별 indice 를 저장합니다.
split_dataset 에서 dictionary 별로 random sample 을 하여 train, validation set을 나누면 됩니다.
class MaskStratifiedDataset(MaskBaseDataset):
"""
target class에 proportional 하게 train/val set을 나눔
"""
def __init__(self, data_dir, mean=(0.548, 0.504, 0.479), std=(0.237, 0.247, 0.246), val_ratio=0.2):
self.multi_label_dict = defaultdict(list)
super().__init__(data_dir, mean, std, val_ratio)
def setup(self):
profiles = os.listdir(self.data_dir)
indice = 0
for profile in profiles:
if profile.startswith("."): # "." 로 시작하는 파일은 무시합니다
continue
img_folder = os.path.join(self.data_dir, profile)
for file_name in os.listdir(img_folder):
_file_name, ext = os.path.splitext(file_name)
if _file_name not in self._file_names: # "." 로 시작하는 파일 및 invalid 한 파일들은 무시합니다
continue
img_path = os.path.join(self.data_dir, profile, file_name) # (resized_data, 000004_male_Asian_54, mask1.jpg)
mask_label = self._file_names[_file_name]
id, gender, race, age = profile.split("_")
gender_label = GenderLabels.from_str(gender)
age_label = AgeLabels.from_number(age)
self.image_paths.append(img_path)
self.mask_labels.append(mask_label)
self.gender_labels.append(gender_label)
self.age_labels.append(age_label)
multi_class_label = self.encode_multi_class(mask_label, gender_label, age_label)
self.multi_label_dict[multi_class_label].append(indice)
indice += 1
def split_dataset(self) -> Tuple[Subset, Subset]:
train_indices = []
val_indices = []
for key, value in self.multi_label_dict.items():
n_val = int(len(value) * self.val_ratio)
random.shuffle(value)
key_val_indices = value[:n_val]
key_train_indices = value[n_val:]
val_indices += key_val_indices
train_indices += key_train_indices
random.shuffle(val_indices)
random.shuffle(train_indices)
return Subset(self, train_indices), Subset(self, val_indices)
ThreeWayStratifiedDataset¶
ThreeWayStratifiedDataset 같은 경우, age, gender, mask 를 각각 label 해서 데이터를 생성합니다.
MaskBaseDataset 같은 경우, 하나의 label를 return 하며 18 class 가 있습니다.
ThreeWayStratifiedDataset 같은 경우,3개(age, gender, mask)의 labels를 return 하며 각각의 3,2,3 class 가 있습니다.MaskBaseDataset 를 inherit 상속 받아 쓰시면 됩니다.
바꾸어야 될 부분은 __getitem__, setup, splitdataset 함수입니다.
\_getitem__ 함수 3가지 label 를 각각 return 하게 바꾸어 줍니다. -> Model Architecture 및 훈련방법 또한 달라질 것입니다.
set 함수에서 dictionary 을 활용하여 클래스별 indice 를 저장합니다.
split_dataset 에서 dictionary 별로 random sample 을 하여 train, validation set을 나누면 됩니다.
- 더욱 간단하게 구현하려면 MaskStratifiedDataset 를 상속받아 구현하실 수 있습니다.
class ThreeWayStratifiedDataset(MaskBaseDataset):
def __init__(self, data_dir, mean=(0.548, 0.504, 0.479), std=(0.237, 0.247, 0.246), val_ratio=0.2):
self.multi_label_dict = defaultdict(list)
super().__init__(data_dir, mean, std, val_ratio)
def __getitem__(self, index):
assert self.transform is not None, ".set_tranform 메소드를 이용하여 transform 을 주입해주세요"
image = self.read_image(index)
mask_label = self.get_mask_label(index)
gender_label = self.get_gender_label(index)
age_label = self.get_age_label(index)
multi_class_label = self.encode_multi_class(mask_label, gender_label, age_label)
image_transform = self.transform(image)
return image_transform, [age_label, mask_label, gender_label]
def setup(self):
profiles = os.listdir(self.data_dir)
indice = 0
for profile in profiles:
if profile.startswith("."): # "." 로 시작하는 파일은 무시합니다
continue
img_folder = os.path.join(self.data_dir, profile)
for file_name in os.listdir(img_folder):
_file_name, ext = os.path.splitext(file_name)
if _file_name not in self._file_names: # "." 로 시작하는 파일 및 invalid 한 파일들은 무시합니다
continue
img_path = os.path.join(self.data_dir, profile, file_name) # (resized_data, 000004_male_Asian_54, mask1.jpg)
mask_label = self._file_names[_file_name]
gender, race, age = profile.split("_")
gender_label = GenderLabels.from_str(gender)
age_label = AgeLabels.from_number(age)
self.image_paths.append(img_path)
self.mask_labels.append(mask_label)
self.gender_labels.append(gender_label)
self.age_labels.append(age_label)
multi_class_label = self.encode_multi_class(mask_label, gender_label, age_label)
self.multi_label_dict[multi_class_label].append(indice)
indice += 1
def split_dataset(self) -> Tuple[Subset, Subset]:
"""
데이터셋을 target 의 비율로 나눕니다.
"""
train_indices = []
val_indices = []
for key, value in self.multi_label_dict.items():
n_val = int(len(value) * self.val_ratio)
random.shuffle(value)
key_val_indices = value[:n_val]
key_train_indices = value[n_val:]
val_indices += key_val_indices
train_indices += key_train_indices
random.shuffle(val_indices)
random.shuffle(train_indices)
return Subset(self, train_indices), Subset(self, val_indices)
'programming > pytorch' 카테고리의 다른 글
Pytorch - timm, torchvision.models part2) (0) | 2022.03.10 |
---|---|
Pytorch - timm, torchvision.models part1) (1) | 2022.03.09 |
Dataset, DataLoader 심화 (0) | 2022.03.05 |
Dataset, DataLoader Basics (0) | 2022.03.04 |
댓글